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Abstract

In order to understand the characteristics of surface patterns on silicon melt in Czochralski furnaces, we conducted a

series of unsteady three-dimensional numerical simulations of thermocapillary-buoyancy flow of a shallow molten sil-

icon pool with Czochralski configuration (depth d = 3 mm). The crucible sidewall is maintained at constant tempera-

ture. Bottom and free surfaces are adiabatic or allow heat transfer in the vertical direction. The simulation results

indicate that two flow transitions occur with increasing the radial temperature difference along the free surface. At first,

the steady two-dimensional flow becomes steady three-dimensional flow and then oscillatory three-dimensional flow.

The critical conditions for the onset of the instability were determined. Characteristics of the steady and the oscillatory

three-dimensional flows were discussed.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The Czochralski (Cz) method is one of the most

important methods of producing silicon single crystal

from the melt. In this method, the buoyancy and ther-

mocapillary forces are coupled to cause the melt convec-

tion. Smith and Davis [1] performed the linear stability

analysis of thermocapillary flow in a thin and infinitely

extended fluid layer with a free upper surface subjected

to a constant horizontal temperature gradient. They

found two types of three-dimensional (3-D) instabilities,
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i.e. stationary longitudinal rolls and oblique hydrother-

mal waves depending on the Prandtl number (Pr) and

the basic flow pattern (with or without a return flow),

and determined the critical Marangoni number (Ma).

Subsequently, the extension of Smith and Davis� theory
to account for the influence of buoyancy forces was done

by Laure and Roux [2] for the low-Pr fluids. At the same

time, Yamagishi and Fusegawa [3] performed the exper-

iment of thermocapillary-buoyancy flow and observed

dark lines at the surface of the melt by CCD camera dur-

ing silicon Cz growth. Since this pattern looks like the

spoke of a wheel, it is called a spoke pattern. Further-

more, Yi et al. [4] performed a 3-D numerical simulation

of the silicon melt flow and verified asymmetric temper-

ature profiles similar to the spoke patterns and related
ed.
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Fig. 1. Configuration of the system.

Nomenclature

Am amplitude of temperature oscillation, K

Bo Bond number, Eq. (11)

Cp heat capacity, J kg�1 K�1

d depth, m

ez z-directional unit vector

g gravitational acceleration, m s�2

m azimuthal wave number

Ma Marangoni number, Eq. (9)

p pressure, Pa

Pr Prandtl number, Pr = m/a
q heat flux, W m�2

r radius, m

Ra Rayleigh number, Eq. (10)

t time, s

T temperature, K

V velocity vector

z axial coordinate, m

Greek symbols

a thermal diffusivity, m2 s�1

b growth rate constant, s�1

cT temperature coefficient of surface tension,

N m�1 K�1

e emissivity of the melt

h azimuthal coordinate, rad

k thermal conductivity, W m�1 K�1

l dynamic viscosity, kg Æ m�1 s�1

m kinematic viscosity, m2 s�1

q density of the melt, kg m�3

qT thermal expansion coefficient of the melt,

K�1

r Stefan–Boltzmann constant, W m�2 K�4

w stream function, m3 s�1

x angular velocity of hydrothermal waves,

rad s�1

Subscripts

a ambient

c crucible

cri critical

H heated

m melting point

r radial

s crystal

z axial

h azimuthal
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asymmetric flow in the silicon melt. They concluded that

the Rayleigh–Benard or Marangoni–Benard instability

(or both) can cause spoke patterns in the silicon melt.

Nakamura [5] observed the thermal waves due to a non-

axisymmetric flow at a Czochralski-type silicon-melt

surface with a carbon-dummy crystal when the crucible

rotates. It is found that the thermal wave number in-

creased with increasing of the crucible rotation rate

and the traveling rate of the thermal wave in the azi-

muthal direction was slower than the crucible rotation

rate. Recently, Azami et al. [6] observed the moving

spoke patterns on the free surface of a shallow pool of

high-temperature silicon melt (3 mm and 8 mm in depth)

and reported that thermocapillary flow may play an

important role in the incipience of the 3-D convection

and the number of spokes. In our previous paper [7],

we conducted series of unsteady 3-D numerical simula-

tions of thermocapillary and thermocapillary-buoyancy

flows of silicon melt in a shallow annular pool heated

from the outer wall and cooled at the inner cylindrical

wall and verified the existence of the hydrothermal

waves. In the present study, we report a series of numer-

ical simulation on the thermocapillary-buoyancy flow in

a shallow pool of silicon melt which is heated from the

outer wall and cooled at the cylindrical inner rod which

touches the surface of the melt just like the Cz configu-

ration and is the same geometry as that of the experi-

mental apparatus of Azami et al. [6].
2. Model formulation and methodology

We analyze the thermocapillary-buoyancy flow of sil-

icon melt in a shallow molten silicon pool with Cz con-

figuration, as shown schematically in Fig. 1. Radius of

the cylindrical rod (hereafter we call this ‘‘crystal’’) is

rs = 15 mm, the crucible radius rc = 50 mm and the

depth is d = 3 mm. The melt/crystal interface and cruci-

ble sidewall are maintained at constant temperatures Ts

and TH > Ts = Tm, respectively. Tm (=1683 K) is the

melting point temperature of silicon. The following

assumptions are introduced in our model:
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(1) Silicon melt is an incompressible Newtonian fluid

satisfying the Boussinessq approximation except for

the surface tension. (2) The velocity is small and the

flow is laminar. (3) The upper surface is flat and non-

deformable.

At the free surface, the thermocapillary force is taken

into account. On every solid–liquid boundary, the no-

slip condition is applied. In order to evaluate the effect

of vertical heat flux, we introduced two types of thermal

boundary conditions on the free and bottom surfaces,

i.e., case A: adiabatic on the free and bottom surfaces,

and case B: heated at the bottom surface with a constant

heat flux (q = 3 W cm�2) and radiative heat loss to the

ambient at an effective temperature Ta = 1599 K from

the free surface. The thermophysical properties of silicon

melt at Tm = 1683 K is listed in Table 1.

With the above assumptions, the flow and heat trans-

fer equations are expressed as follows:

r � V ¼ 0; ð1Þ

oV

ot
þ V � rV ¼ � 1

q
rP þ mr2V þ qTgðT � TmÞez; ð2Þ

oT
ot

þ V � rT ¼ ar2T : ð3Þ

The initial conditions are expressed as follows (at

t = 0):

V r ¼ 0; ð4aÞ

V h ¼ 0; ð4bÞ

V z ¼ 0; ð4cÞ

T ¼ Tm; r 6 rs ð4dÞ

T ¼ TH � ðTH � TmÞ
lnðr=rcÞ
lnðrs=rcÞ

; r > rs ð4eÞ

The boundary conditions at the free surface (z = d,

rs < r < rc, 0 6 h < 2p)

l
oV r

oz
¼ cT

oT
or

ð5aÞ
Table 1

Physical properties

Symbol Value Unit

Tm 1683 K

k 64 W m�1 K�1

q 2530 kg m�3

l 7.0 · 10�4 kg m�1 s�1

Cp 1000 J kg�1 K�1

qT 1.5 · 10�4 K�1

cT �7.0 · 10�5 N m�1 K�1

Pr 0.011 –

e 0.318 –
l
oV h

oz
¼ cT

oT
roh

; ð5bÞ

V z ¼ 0; ð5cÞ

oT
oz

¼ 0 or � k
oT
oz

¼ erðT 4 � T 4
aÞ; ð5dÞ

at the melt/crystal interface (r 6 rs, 0 6 z 6 d, 0 6

h < 2p)

V r ¼ 0; ð6aÞ

V h ¼ 0; ð6bÞ

V z ¼ 0; ð6cÞ

T ¼ Tm; ð6dÞ

at the bottom (z = 0, r < rc, 0 6 h < 2p)

V r ¼ 0; ð7aÞ

V h ¼ 0; ð7bÞ

V z ¼ 0; ð7cÞ

oT
oz

¼ 0 or � k
oT
oz

¼ q ð7dÞ

at the crucible sidewall (r = rc, 0 6 z 6 d, 0 6 h < 2p)

V r ¼ 0; ð8aÞ

V h ¼ 0; ð8bÞ

V z ¼ 0; ð8cÞ

T ¼ TH: ð8dÞ

The overall temperature difference (DT = TH � Tm)

in the radial direction and the effect of the gravity are ex-

pressed by the Marangoni number and the Rayleigh

number, respectively:

Ma ¼ cTðoT=orÞd2

la
� cTd

2

la
DT

rc � rs
; ð9Þ

Ra ¼ gqTðoT=orÞd4

ma
: ð10Þ

The relative strength of the buoyancy convection

compared to thermocapillary flow can be qualified in

terms of the dynamic Bond number

Bo ¼ Ra=Ma ¼ qgqTd
2

cT
ð11Þ

The fundamental equations are discretized by the fi-

nite difference method. The modified central difference

approximation is applied to the diffusion terms while

the QUICK scheme is used for the convective terms.

The SIMPLE algorithm [8] is used to handle the

pressure-velocity coupling. In this study, nonuniform
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staggered grids of 62r · 22z · 60h are used. The valida-

tion of the code for the thermocapillary and thermocap-

illary-buoyancy flow simulation was checked in our

previous works [7,9].

Numerical simulations were conducted on an MPU

of the Fujitsu VPP700 at the Computer Center of Kyu-

shu University. The time increment was chosen between

0.9 and 2.7 · 10�3 s. The convergence at each time step

was assumed if the maximum residual error of the con-

tinuity equation among all control volumes became less

than 10�5 s�1.
3. Results and discussion

3.1. Basic flow

When the radial temperature gradient is small, the

thermocapillary-buoyancy flow is steady and axisym-

metric. This type of flow is called as the ‘‘basic flow’’.

The velocity field is displayed in terms of the stream

function w, which is defined as

V r ¼
1

r
ow
oz

; ð12aÞ

V z ¼ � 1

r
ow
or

: ð12bÞ
Fig. 2. Characteristics of the basic flow under sub-critical DT: (a) st

w(+) = 0.25 cm3 s�1, w(�) = �0.01 cm3 s�1, dw(w(+) � w(�))/10, d
DT = 10 K(Ma = 10.2), w(+) = 0.26 cm3 s�1, w(�) = �0.01 cm3 s�1, d
temperature as a function of radius r; (d) distributions of radial surfa
This definition results in positive value of w for a coun-

ter-clockwise flow and negative for clockwise flow.

When DT(Ma) is very small, the basic thermocapil-

lary-bouyancy flow of silicon melt appears as an axisym-

metric steady radial flow with a single convection roll

cell. The free surface fluid flows from the outer wall to

the crystal. A return flow is dominant near the bottom.

The strength of the basic flow increases as DT(Ma) in-

creases. A second co-rotating roll cell appears below

the free surface when DT(Ma) is increased, as shown

in Fig. 2(a) and (b) for cases A and B, respectively.

The maximum stream function of the basic flow localizes

near the periphery of the crystal. Obviously, the flow

structure is quite insensitive to the thermal boundary

conditions on the free and bottom surface. It should

be noted that the melt below the crystal is almost

stagnant.

For case A, the temperature distribution in the radial

direction is almost independent of the presence of the

melt flow, since the thermal conductivity of the silicon

melt is large. For case B, the radial temperature distribu-

tions are strongly dependent on the heat fluxes at the top

and bottom surfaces, as shown in Fig. 2(a). Fig. 2(d)

shows the distribution of the radial surface velocity

(Vr) as a function of radial coordinate. Because large ra-

dial temperature drops appear near the crystal, the sur-

face velocity exhibits a sharp peak near the crystal.
reamlines and isotherms for case A at DT = 10 K (Ma = 10.2),

T = 1 K; (b) streamlines and isotherms for case B at

w(w(+) � w(�))/10, dT = 1 K; (c) distributions of the surface

ce velocity (Vr) as a function of radius r.
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3.2. Steady three-dimensional flow

When DT(Ma) exceeds a certain threshold value, 3-D

disturbances start an exponential growth and finally a

steady 3-D flow field is established. The mode and

growth process of the 3-D disturbance are characterized

by the azimuthal wave number m and the growth rate

constant b. The growth of any 3-D disturbance (X)

can be expressed by Eq. (13)

X ðr; h; z; tÞ ¼ X 0ðr; h; z; 0Þ sinð2pmhÞ expðbtÞ: ð13Þ

In order to extract the 3-D disturbances, we define

the fluctuation dX of a physical quantity X as follows:

dX ðr; h; d; tÞ ¼ X ðr; h; d; tÞ � 1

2p

Z 2p

0

X ðr; h; d; tÞdh ð14Þ

Typical examples of growth of the azimuthal velocity at

the monitoring point P(r = 20 mm, h = 0) are shown in

Fig. 3(a). A slope of the semi-logarithmic plot of Vh

vs. t provides the b value. From a plot of b vs. DT(Ma),

as shown in Fig. 3(b), we can determine the first critical

temperature differences DTcri1 which corresponds to a

state of the neutral stability limit (b = 0). The first criti-

cal temperature differences DTcri1 and the corresponding

critical Marangoni numbers Macri1 are listed in Table 2,

together with the results of the previous work [7].

Once the 3-D disturbance starts, spoke patterns ap-

pear on the melt free surface. In this case, the spoke pat-

terns are stationary, as shown in Fig. 4(a) and (b). These

stationary spoke patterns correspond to a series of circu-
Fig. 3. Determination of the first critical point: (a) growth of the azim

DT(Ma) plot for determining DTcri1(Macri1).

Table 2

The critical temperature difference DTcri and Marangoni number Ma

Configuration Transition point

Pool with the Cz configuration First critical point

Second critical point

Annular pool [7]
lating flow cells as shown in Fig. 5 lined up side by side

in the azimuthal direction. Structure of these secondary

flow cells can be understood from the distributions of

the fluctuation velocity and temperature on two r–z

planes (O–A and O–B in Fig. 5(a) and (b), respectively)

and two h � z planes, shown in Fig. 5(c–d). With

increasing DT(Ma), the number of spoke patterns de-

creases and the amplitude of temperature oscillations

at the monitoring point P increases slightly, as shown

in Fig. 6. However, in a thin annular pool of silicon

melt, the steady 3-D flow does not appear and the steady

2-D flow exhibits direct transition to an oscillatory 3-D

flow because of the effect of the inner cylinder.

3.3. Oscillatory three-dimensional flow

When DT(Ma) exceeds a second threshold value, the

3-D stationary flow field becomes unstable and the

whole flow field starts rotating motion in azimuthal

direction with a constant angular velocity, x. The oscil-

lation amplitudes increase exponentially with time. Pres-

ent numerical simulations with large DT show that

during the initial growth process the intensity of any dis-

turbance (X) can be expressed by Eq. (15),

X ðr; h; z; tÞ ¼ X 0ðr; h; z; 0Þ exp½ðb þ ibIÞtÞ
: ð15Þ

Fig. 7(a) shows the growth process of the azimuthal

velocity at monitoring point P for the case A at

DT = 18 K (Ma = 18.3). The second critical temperature

difference DTcri2 determined from a plot of b vs. DT(Ma)
uthal velocity disturbances at monitoring point P and (b) b vs.

cri

Case A Case B

DTcri Macri DTcri Macri

11.0 11.2 12.6 12.8

17.4 17.7 18.2 18.5

9.0 9.1 7.3 7.5



Fig. 4. Snapshots of surface temperature fluctuation at

DT = 16 K (Ma = 16.3) for the steady 3-D flow: (a) case A;

(b) case B.
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(see Fig. 7(b)), and the second critical Marangoni num-

ber Macri2 are tabulated in Table 2.

Fig. 8 shows simulation results above the second crit-

ical point for case A, including the distribution of sur-

face temperature fluctuation dT and an STD of surface

temperature along a circumference at r = 20 mm. In case

A, when the temperature difference slightly exceeds the

second critical value, for example DT = 18 K (Ma =

18.3), the rotation is not complete and the spokes exhibit

irregular oscillations back and forth in the azimuthal

direction, as shown in Fig. 8(a). In this case, the STD
Fig. 5. Temperature fluctuation and fluctuation velocity vectors at diff

(c) section C–C (r = 15.6 mm); (d) section D–D (r = 47.2 mm) and (e
shows a set of wavy lines. Under larger temperature dif-

ference, DT = 21 K (Ma = 21.3) as shown in Fig. 8(b),

many traveling curved spokes are observed on the melt

surface. Fig. 8(d) shows the temperature oscillations at

the monitoring point P. In this case, the curved spokes

move along the counter-clockwise direction. With the

increasing of the radial temperature difference, the angu-

lar velocity decreases slightly, but the amplitude of the

temperature oscillations at the monitoring point P in-

creases. These may correspond to the ‘‘hydrothermal

wave’’. The angle (/) between the wave propagation

and the radial direction is approximately 78� at

r = 20 mm, which is close to the angle of 80� predicted

by the linear stability theory for infinite rectangular

layer for Pr = 0.01 [1]. After DT exceeds about 25 K,

the moving direction of the curved spokes changes

abruptly from along the counter-clockwise to along the

clockwise direction. Fig. 8(c) shows the results at

DT = 27 K Ma = 21.4). In this region, the angular veloc-

ity of the waves and the amplitude of the temperature

oscillations at the monitoring point P increase with the

increasing of the radial temperature difference, as shown

in Fig. 6. For the molten silicon pool with d = 3 mm, the

dynamic Bond number is Bo = Ra/Ma = 0.48. That

means that Ma number is around twice Ra number.

Therefore, thermocapillary forces are dominant and
erent sections marked in Fig. 4(a): section O–A; (b) section O–B;

) secondary circulating flow.



Fig. 6. Variation of number of spokes, amplitude of temper-

ature oscillations at monitoring point P and angular velocity of

wave propagation as functions of DT (Ma).
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the hydrothermal wave instability is responsible for the

oscillatory 3-D flow.

It should be noted that a similar two-step flow transi-

tion to an oscillatory flow is well known in theMarangoni

convection in half-zone liquid bridge of low-Pr fluids [10–

12]. In a half-zone liquid bridge, the first and second flow

transitions are caused by hydrodynamic instability and

the surface fluid flows against the thermocapillary force

in the azimuthal direction. In the present case, however,

on wide area of the melt surface, the surface fluid flows

in the same direction as that of thermocapillary force.
Fig. 7. Determination of the second critical point: (a) growth of the a

DT(Ma) plot for determining DTcri2(Macri2).
For case B, the flow patterns are almost the same as

those of the case A, as shown in Fig. 9. This fact suggests

that the small vertical heat flux does not cause significant

effects on the 3-D flow patterns in the silicon melt in a

shallow pool with the Cz configuration. The number

of the curved spokes and the angular velocity of the

wave propagation are independent of the thermal

boundary conditions at the bottom and free surface.

However, the amplitude of the temperature oscillations

at the point P is slightly less than that of case A, as

shown in Fig. 6. Fig. 9(c) shows the experimental result

reported by Azami et al. [6]. The surface patterns look

similar to those of the numerical simulation. However,

it is found that the traveling speeds in the azimuthal

direction in the present simulation are slower than those

of experiments. Difference in the geometric size, uncer-

tainties in the thermal boundary conditions in the

experiments and also uncertainty of the temperature

coefficient of surface tension of silicon melt may be

attributed to the cause of the discrepancy.
4. Conclusions

A series of 3-D numerical simulations of thermocap-

illary-buoyancy flow in shallow silicon melt pools with

the Cz configuration were conducted by means of the fi-

nite difference method. The numerical results reveal that

the Cz configuration changes the stability and the char-

acteristics of the induced 3-D flow patterns from those in

an annular pool.

A two-step flow transition process leads the steady 2-

D flow to a 3-D oscillatory flow. At the first critical con-

dition, a 2-D steady flow changes to a stationary 3-D

flow with straight spokes on the melt surface and at

the second critical condition flow exhibits a transition

from the steady 3-D flow to an oscillatory 3-D flow with

many curved spokes traveling in the azimuthal direction,

i.e., hydrothermal waves.

The critical temperature differences for the flow tran-

sitions were determined for adiabatic pools and pools
zimuthal velocity disturbances at monitoring point P; (b) b vs.



Fig. 8. Snapshots of surface temperature fluctuation and STD of surface temperature distribution of the oscillatory 3-D flow at

r = 20 mm for case A: (a) DT = 18 K (Ma = 18.3); (b) DT = 21 K (Ma = 21.3); (c) DT = 27 K (Ma = 27.4) and (d) temperature

oscillations at the monitoring point P for case A at D T = 21 K (Ma = 21.3).

Fig. 9. Snapshots of surface temperature fluctuation for case B: (a) DT = 21 K (Ma = 21.3); (b) DT = 27 K (Ma = 27.4) and

(c) experimental result [6].
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accompanying a small vertical heat flux. The critical val-

ues for the incipience of hydrothermal wave are signifi-

cantly larger than those in annular pools with inner

cylindrical cold wall determined in our previous work

[7].
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